인공지능 분류
[인공지능][실습] K-평균(K-Means) 알고리즘으로 과일(fruits) 사진을 분류해보고 엘보우(Elbow) 방법을 통해 최적의 k값을 찾아보자
K-평균(K-Means)에 대한 이론이 필요하신 분들은 아래 링크를 참조해주시기 바랍니다. [인공지능][개념] K-평균(K-means) 알고리즘과 군집화(Clustering) + 이너셔(Inertia) 이해하기 : https://itstory1592.tistory.com/17 이번 글에서는 K-평균(K-means) 알고리즘을 사용하여 과일 사진을 비지도 학습으로 분류해보고 엘보우(Elbow) 방법을 통해 최적의 k값을 찾아보자. !wget https://bit.ly/fruits_300_data -O fruits_300.npy 우선, 과일 사진을 다운로드하기 위해서 위의 코드를 입력해준다. 파이썬에서는 !(느낌표)를 사용하고 리눅스 명령어를 입력하면 해당 명령어를 사용할 수 있다. 여기서는 웹 서버로부터 ..
[인공지능][개념] K-평균(K-means) 알고리즘과 군집화(Clustering) + 이너셔(Inertia) 이해하기
K-평균 (K-means) K-평균(K-means) 알고리즘은 데이터를 k개의 클러스터로 묶는 알고리즘이다. K-평균 알고리즘의 목적은 각 클러스터와의 거리 차이 분산을 최소화하여 데이터를 분류(Classification)하는 데에 있다. 클러스터(Cluster)라는 명칭이 생소하게 느껴질 수 있지만, 그룹이라는 단어같이 어떠한 요소들을 묶어놓은 단위체라는 뜻이며, 추가적으로 어떠한 요소들을 묶는 행위를 클러스터링(Clustering)이라고 부른다. K-평균 군집 알고리즘은 특정 데이터에서 평균값을 자동으로 찾아주는데, 이 평균값이 클러스터의 중심에 위치하기 때문에 클러스터 중심 또는 센트로이드(Centroid)라고도 부른다. 특히, 데이터 특징(feature)을 분석했을 때, 정답 역할을 하는 타겟(t..
[인공지능][개념] 분류(Classification) - 결정 트리(Decisioin Tree)와 가지치기(Pruning)
의사 결정 트리 (Decision Tree) 의사 결정트리(Decision Tree)란 모델에게 질문을 던지고 YES or NO 를 판단하여 결과의 대상을 좁혀나가는 인공지능의 분류 기법 중 하나이다. (의사 결정트리 모델을 거꾸로 뒤집어 보면 나무와 비슷한 모양이 보이기 때문에 나무(Tree)라는 이름이 붙게 되었다.) 다소 복잡해 보일 수 있는 결정 트리를 하나하나 함께 살펴보도록 하자. 오른쪽 이미지는 실습에서 진행할 레드 와인(음성 클래스)과 화이트 와인(양성 클래스)을 맞추는 이진 분류(Binary Classification) 모델이다. 결정 트리 모델을 보면 '노드(Node)'라고 부르는 네모난 질문 박스가 보일 것이다. 설명을 위해 트리의 맨 최상위에 위치한 루트 노드(Root Node)를 ..